7 de octubre de 2012

El átomo de Bohr


Las primeras aportaciones relevantes de Bohr a la Física contemporánea tuvieron lugar en 1913, cuando, para afrontar los problemas con que había topado su maestro y amigo Rutherford, afirmó que los movimientos internos que tienen lugar en el átomo están regidos por leyes particulares, ajenas a las de la Física tradicional. Al hilo de esta afirmación, Bohr observó también que los electrones, cuando se hallan en ciertos estados estacionarios, dejan de irradiar energía.

En realidad, Rutherford había vislumbrado un átomo de hidrógeno conformado por un protón (es decir, una carga positiva central) y un partícula negativa que giraría alrededor de dicho protón de un modo semejante al desplazamiento descrito por los planetas en sus órbitas en torno al sol. Pero esta teoría contravenía las leyes de la Física tradicional, puesto que, a tenor de lo conocido hasta entonces, una carga eléctrica en movimiento tenía que irradiar energía, y, por lo tanto, el átomo no podría ser estable.

Bohr aceptó, en parte, el modelo de Rutherford, pero lo superó combinándolo con las teorías cuánticas de Max Planck (1858-1947). En los tres artículos que publicó en el Philosophical Magazine en 1913, enunció cuatro postulados: 1) Un átomo posee un determinado número de órbitas estacionarias, en las cuales los electrones no radian ni absorben energía, aunque estén en movimiento. 2) El electrón gira alrededor de su núcleo de tal forma que la fuerza centrífuga sirve para equilibrar con exactitud la atracción electrostática de las cargas opuestas. 3) El momento angular del electrón en un estado estacionario es un múltiplo de h/2p (donde h es la constante cuántica universal de Planck).

Según el cuarto postulado, cuando un electrón pasa de un estado estacionario de más energía a otro de menos (y, por ende, más cercano al núcleo), la variación de energía se emite en forma de un cuanto de radiación electromagnética (es decir, un fotón). Y, a la inversa, un electrón sólo interacciona con un fotón cuya energía le permita pasar de un estado estacionario a otro de mayor energía. Dicho de otro modo, la radiación o absorción de energía sólo tiene lugar cuando un electrón pasa de una órbita de mayor (o menor) energía a otra de menor (o mayor), que se encuentra más cercana (o alejada) respecto al núcleo. La frecuencia f de la radiación emitida o absorbida viene determinada por la relación: E1-E2=hf, donde E1 y E2 son las energías correspondientes a las órbitas de tránsito del electrón.

http://www.biografiasyvidas.com/biografia/b/bohr.htm
---
**Visita: http://bohemiaylibre.blogspot.com

No hay comentarios: