La palabra «álgebra» es de origen árabe, deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado Kitab al-yabr wa-l-muqabala (en árabe كتاب الجبر والمقابلة) (que significa "Compendio de cálculo por el método de completado y balanceado"), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas.Etimológicamente, la palabra «álgebra» جبر ŷabr, proviene del árabe y significa "reducción".
Los orígenes del álgebra se remontan a los antiguos babilonios, que habían desarrollado un avanzado sistema aritmético con el que fueron capaces de hacer cálculos en una forma algebraica. Con el uso de este sistema fueron capaces de aplicar las fórmulas y soluciones para calcular valores desconocidos. Este tipo de problemas suelen resolverse hoy mediante ecuaciones lineales,ecuaciones de segundo grado y ecuaciones indefinidas. Por el contrario, la mayoría de los egipcios de esta época, y la mayoría de la India, griegosy matemáticos chinos en el primer milenio antes de Cristo, normalmente resolvían tales ecuaciones por métodos geométricos, tales como los descritos en la matemática Rhind Papyrus, Sulba Sutras, Elementos de Euclides, y los Nueve Capítulos sobre el Arte de las Matemáticas. El trabajo geométrico de los griegos, centrado en las formas, dio el marco para la generalización de las fórmulas más allá de la solución de los problemas particulares de carácter más general, sino en los sistemas de exponer y resolver ecuaciones.
Las mentes griegas matemáticas de Alejandría y Diofanto siguieron las tradiciones de Egipto y Babilonia, pero el libro Arithmetica de Diophantus está en un nivel mucho más alto. Más tarde, los matemáticos árabes y musulmanes desarrollaron métodos algebraicos a un grado mucho mayor de sofisticación. Aunque los babilonios y Diophantus utilizaron sobre todo los métodos especiales ad hoc para resolver ecuaciones, Al-Khowarizmi fue el primero en resolver ecuaciones usando métodos generales. Él resolvió el indeterminado de ecuaciones lineales, ecuaciones cuadráticas, ecuaciones indeterminadas de segundo orden y ecuaciones con múltiples variables.
Fuente: Wikipedia
---
**Visita: http://bohemiaylibre.blogspot.com
No hay comentarios:
Publicar un comentario